Принцип работы атомной электростанции. Справка. АЭС: принцип работы и устройство. История создания АЭС Аэс сообщение по физике

В середине ХХ века лучшие умы человечества упорно трудились сразу над двумя задачами: над созданием атомной бомбы, а также над тем, как можно использовать энергию атома в мирных целях. Так появились первые в мире В чем заключается принцип работы АЭС? И где в мире расположены крупнейшие из этих электростанций?

История и особенности ядерной энергетики

"Энергия - всему голова" - именно так можно перефразировать известную пословицу, учитывая объективные реалии XXI века. С каждым новым витком технического прогресса человечеству необходимо всё большее ее количество. Сегодня энергия "мирного атома" активно используется в экономике и производстве, и не только в энергетике.

Электроэнергия, производимая на так называемых АЭС (принцип работы которых весьма прост по своей сути), широко используется в промышленности, освоении космоса, медицине и сельском хозяйстве.

Ядерной энергетикой называется отрасль тяжелой промышленности, извлекающая тепловую и электроэнергию из кинетической энергии атома.

Когда же появились первые АЭС? Принцип работы подобных электростанций советские ученые изучали еще в 40-х годах. Кстати, параллельно они же изобретали и первую атомную бомбу. Таким образом, атом был одновременно и "мирным", и смертельным.

В 1948 году И. В. Курчатов предложил советскому правительству начать проводить непосредственные работы по извлечению атомной энергии. Двумя годами позже в Советском Союзе (в городе Обнинске Калужской области) начинается строительство самой первой на планете АЭС.

Принцип работы всех схож, а разобраться в нем совсем не трудно. Об этом пойдет речь далее.

АЭС: принцип работы (фото и описание)

В основе работы любой лежит мощная реакция, которая возникает при делении ядра атома. В этом процессе чаще всего участвуют атомы урана-235 или же плутония. Ядро атомов делит нейтрон, попадающий в них извне. При этом возникают новые нейтроны, а также осколки деления, которые имеют огромную кинетическую энергию. Как раз эта энергия и выступает главным и ключевым продуктом деятельности любой атомной станции

Так можно описать принцип работы реактора АЭС. На следующем фото вы можете посмотреть, как он выглядит изнутри.

Выделяют три основных типа ядерных реакторов:

  • канальный реактор высокой мощности (сокращенно - РБМК);
  • водно-водяной реактор (ВВЭР);
  • реактор на быстрых нейтронах (БН).

Отдельно стоит описать принцип работы АЭС в целом. О том, как она работает, речь пойдет в следующей статье.

Принцип работы АЭС (схема)

Работает в определенных условиях и в строго заданных режимах. Кроме (одного или нескольких), в структуру АЭС входят и прочие системы, специальные сооружения и высококвалифицированный персонал. В чем же заключается принцип работы АЭС? Кратко его можно описать следующим образом.

Главный элемент любой АЭС - это ядерный реактор, в котором происходят все основные процессы. О том, что происходит в реакторе, мы писали в предыдущем разделе. (как правило, чаще всего это уран) в виде небольших черных таблеток подается в этот огромный котел.

Энергия, выделяемая во время реакций, происходящих в атомном реакторе, преобразуется в тепло и передается теплоносителю (как правило, это вода). Стоит отметить, что теплоноситель при этом процессе получает и некоторую дозу радиации.

Далее тепло из теплоносителя передается обычной воде (посредством специальных устройств - теплообменников), которая в результате этого закипает. Водяной пар, который при этом образуется, вращает турбину. К последней подсоединен генератор, который и генерирует электрическую энергию.

Таким образом, по принципу действия АЭС - это та же тепловая электростанция. Разница лишь в том, каким способом образуется пар.

География ядерной энергетики

Первая пятерка стран по производству атомной энергии выглядит следующим образом:

  1. Франция.
  2. Япония.
  3. Россия.
  4. Южная Корея.

При этом Соединенные Штаты Америки, вырабатывая в год около 864 миллиардов кВт*час, производят до 20 % всей электроэнергии планеты.

Всего в мире 31 государство эксплуатирует атомные электростанции. Из всех континентов планеты лишь два (Антарктида и Австралия) полностью свободны от атомной энергетики.

На сегодняшний день в мире функционирует 388 ядерных реакторов. Правда, 45 из них уже полтора года не вырабатывали электроэнергию. Большая часть ядерных реакторов расположена в Японии и в США. Полная их география представлена на следующей карте. Зеленым цветом обозначены страны с действующими ядерными реакторами, указано также их общее количество в конкретном государстве.

Развитие ядерной энергетики в разных странах

В целом, по состоянию на 2014 год в развитии ядерной энергетики наблюдается общий спад. Лидерами по строительству новых атомных реакторов являются три страны: это Россия, Индия и Китай. Кроме этого, ряд государств, не имеющих атомных электростанций, планируют построить их в ближайшее время. К таковым можно отнести Казахстан, Монголию, Индонезию, Саудовскую Аравию и ряд стран Северной Африки.

С другой стороны, ряд государств взяли курс на постепенное сокращение числа атомных электростанций. К таким относится Германия, Бельгия и Швейцария. А в некоторых странах (Италия, Австрия, Дания, Уругвай) ядерная энергетика запрещена на законодательном уровне.

Основные проблемы ядерной энергетики

С развитием ядерной энергетики связана одна существенная экологическая проблема. Это так называемое окружающей среды. Так, по мнению многих экспертов, АЭС выделяют больше тепла, нежели такие же по мощности тепловые электростанции. Особо опасно тепловое загрязнение вод, которое нарушает жизни биологических организмов и приводит к гибели многих видов рыб.

Другая острая проблема, связанная с атомной энергетикой, касается ядерной безопасности в целом. Впервые человечество всерьез задумалось об этой проблеме после Чернобыльской катастрофы 1986 года. Принцип работы Чернобыльской АЭС мало чем отличался от такового других атомных электростанций. Однако это не спасло её от крупной и серьезной аварии, повлекшей за собой очень серьезные последствия для всей Восточной Европы.

Причем опасность ядерной энергетики не ограничивается лишь возможными техногенными авариями. Так, большие проблемы возникают с утилизацией ядерных отходов.

Преимущества атомной энергетики

Тем не менее сторонники развития ядерной энергетики называют и явные преимущества работы атомных электростанций. Так, в частности, Всемирная ядерная ассоциация недавно опубликовала свой отчет с весьма интересными данными. Согласно ему, количество человеческих жертв, сопровождающих производство одного гигаватта электроэнергии на АЭС, в 43 раза меньше, чем на традиционных тепловых электростанциях.

Есть и другие, не менее важные, преимущества. А именно:

  • дешевизна производства электроэнергии;
  • экологическая чистота атомной энергетики (за исключением лишь теплового загрязнения вод);
  • отсутствие строгой географической привязки атомных электростанций к крупным источникам топлива.

Вместо заключения

В 1950 году была построена первая в мире АЭС. Принцип работы атомных электростанций заключается в делении атома с помощью нейтрона. В результате этого процесса высвобождается колоссальный объем энергии.

Казалось бы, атомная энергетика - это исключительное благо для человечества. Однако история доказала обратное. В частности, две крупные трагедии - авария на советской Чернобыльской АЭС в 1986 году и авария на японской электростанции Фукусима-1 в 2011 году - продемонстрировали опасность, которую несет в себе "мирный" атом. И многие страны мира сегодня начали задумываться о частичном или даже полном отказе от ядерной энергетики.

1. Введение ……………………………………………………. Стр.1

2.Физические основы ядерной энергетики…………………Стр.2

3. Ядро атома……………………………………………………Стр.4

4. Радиоактивность…………………………………………….Стр.4

5. Ядерные реакции…………………………………………… Стр.4

6. Деление ядер…………………………………………………… Стр.4

7. Цепные ядерные реакции………………………………… Стр.5

8. Основы теории реакторов………………………………… Стр.5

9. Принципы регулирования мощности реакторов……… Стр.6

10. Классификация реакторов………………………………… Стр.7

11.Конструктивные схемы реакторов…………………………Стр.9

13.Конструкции оборудования АЭС………………………… Стр.14

14. Схема трёхконтурной АЭС …………………………………Стр.16

15.Теплообненники АЭС……………………………………… Стр.19

16.Турбомашины АЭС………………………………………… Стр.20

17. Вспомогательное оборудование АЭС……………………… Стр. 20

18. Компоновка оборудования АЭС…………………………… Стр.21

19. Вопросы техники безопасности на АЭС…………………… Стр.21

20. Передвижные АЭС …………………………………………Стр. 24

21. Используемая литература…………………………………… Стр.26

Введение.

Состояние и перспективы развития атомной энергетике.

Развитие промышленности, транспорта, сельского и коммунального хозяйства требует непрерывного увеличения производства электроэнергии.

Мировое увеличение потребления энергии растёт с каждым годом.

Для примера: в 1952году оно составляло в условных единицах 540 млн.т., а уже в 1980году 3567млн.т. практически за 28 лет увеличилось более чем в 6.6 раз. При этом необходимо отметить, что запасы ядерного топлива в 22 раза превышают запасы органического топлива.

На 5-ой мировой энергетической конференции запасы топлива были оценены следующими величинами:

1. Ядерное топливо…………………………..520х106

2. Уголь………………………………………55,5х106

3. Нефть………………………………………0,37х106

4. Натуральный газ ………………………….0,22х106

5. Нефтяные сланцы…………………………0,89х106

6. Гудрон……………………………………..1,5х 106

7. Торф………………………………………. 0,37х 10

Всего 58,85х106

При современном уровне потребления энергии мировые запасов по разным подсчётам кончутся через 100-400лет.

По прогнозам учёных потребление энергии будет разниться 1950 года к 2050 году в 7 раз. Запасы ядерного топлива могут обеспечить нужды населения в энергии на значительно более длительный период.

Не смотря на богатые природные ресурсы России, в органическом топливе, а так же гидроэнергоресурсы крупных рек (1200млрд. КВт час) или 137 млн. кВт. час уже сегодня президент страны обратил особое внимание на развитии атомной энергетики. Учитывая, что уголь, нефть, газ, сланцы, торф являются ценным сырьём для различных отраслей химической промышленности. Из угля получают кокс для металлургии. Поэтому стоит задача сохранить для некоторых отраслей промышленностей органические запасы топлива. Таких тенденций придерживается и мировая практика.

Учитывая, что стоимость энергии получаемая на атомных станциях ожидается быть ниже, чем на угольных и близка к стоимости энергии на гидроэлектростанциях, актуальность увеличения строительств атомных электростанций становится явной. Несмотря на то, что атомные станции несут в себе повышенную опасность, (радиоактивность в случае аварии)

Все развитые страны, как Европы, так и Америки в последнее время активно ведут наращивания их строительства, не говоря об использовании атомной энергии, как в гражданской, так и военной технике это атомоходы, подводные лодки, авианосцы.

Как в гражданской так и в военных направлениях пальма первенства принадлежала и принадлежит России.

Решение проблемы непосредственного преобразования энергии расщепления атомного ядра в электрическую энергию позволить значительно снизить стоимость вырабатываемой электроэнергии.

Физические основы ядерной энергетики.

Все вещества в природе состоят из мельчайших частиц – молекул, находящих в непрерывном движении. Теплота тела является результатом движения молекул.

Состояние полного покоя молекул соответствует абсолютный нуль температуры.

Молекулы вещества состоят из атомов одного или несколько химических элементов.

Молекула самая мельчайшая частица данного вещества. Если разделить молекулу сложного вещества на составляющие части, то получатся атомы других веществ.

Атом – мельчайшая частица данного химического элемента. Он не может делиться дальше химическим способом на ещё более мелкие частицы, хотя и атом имеет свою внутреннею структуру и состоит из положительно заряженного ядра и отрицательно заряженной электронной оболочке.

Число электронов в оболочке лежит в пределах от одного до ста одного. Последнее число электронов имеет элемент название Менделевий.

Этот элемент назван Менделевий именем Д.И. Менделеева открывшего в 1869 году периодический закон, согласно которому физико-химические свойства всех элементов зависят от атомного веса, причём через определённые периоды встречаются элементы со схожими физико-химическими свойствами.

Ядро атома.

В ядре атома сосредоточена основная часть его массы. Масса электронной оболочки составляет лишь доля процента массы атома. Атомные ядра представляют сложные образования, состоящие из элементарных частиц-протонов обладающих положительным электрическим зарядом, и не имеющих электрического заряда частиц - нейтронов.

Положительно заряженные частицы- протоны и электрически нейтральные частицы-нейтроны носят общее название нуклоны. Протоны и нейтроны в ядре атома связаны так называемыми ядерными силами.

Энергией связи ядра называют количество энергии, требующей для разделения ядра на отдельные нуклоны. Поскольку ядерные силы в миллионы раз превышают силы химических связей, то из этого следует, что ядро является соединением, прочность которого неизмеримо превышает прочность соединения атомов в молекуле.

При синтезе 1кг гелия из атома водорода выделяется количество тепла эквивалентное количеству тепла при сгорании 16000 т. угля, тогда как при расщеплении 1кг урана выделяется количества тепла, равное теплу выделяемому при сгорании 2700т угля.

Радиоактивность.

Радиоактивностью называют способность спонтанного превращения неустойчивых изотопов одного химического элемента в изотопы другого элемента сопровождающего испусканием альфа, бета и гамма лучей.

Превращение элементарных частиц (нейтронов, мезонов) так же иногда называют радиоактивностью.

Ядерные реакции.

Ядерными реакциями называют превращения атомных ядер в результате их взаимодействия с элементарными частицами и друг с другом.

В химических реакциях происходит перестройка внешних электронных оболочек атомов, и энергия этих реакций измеряется электрон-вольтами.

В ядерных реакциях происходит перестройка ядра атома, причём во многих случаях результатом перестройки является превращение одного химического элемента в другой. Энергия ядерных реакций измеряется миллионами электрон-вольт.

Деление ядер .

Открытие деления ядер урана, его экспериментальное подтверждение в 1930 дало возможность увидеть неисчерпаемые возможности применения в различных сферах народного хозяйства и в том числе получения энергии при строительстве атомных установок.

Цепная ядерная реакция.

Цепной ядерной реакцией называется реакция деления ядер атомов тяжёлых элементов под действием нейтронов, в каждом акте которой число нейтронов возрастает, в результате чего возрастает самоподдерживающийся процесс деления.

Цепные ядерные реакции относятся к классу экзотермических, то есть сопровождающихся выделением энергии.

Основы теории реакторов.

Ядерным энергетическим реактором называют агрегат, предназначенный для получения тепла из ядерного горючего путём самоподдерживающийся управляемой цепной реакции, деления атомов этого горючего.

При работе ядерного реактора, для исключения возникновения цепной реакции, для искусственного гашения реакции используют замедлители, методом автоматического ввода в реактор элементов замедлителей. Чтобы поддерживать мощность реактора на постоянном уровне, необходимо соблюдать условие постоянства средней скорости деления ядер, так называемый коэффициент размножения нейтронов.

Атомный реактор характеризуется критическими размерами активной зоны, при которых коэффициент размножения нейтронов К=1. Задаваясь составом ядерного делящего материала, конструкционными материалами, замедлителем и теплоносителем, выбирают вариант, при котором К = ∞ имеет максимальное значение.

Эффективный коэффициент размножения представляет собой отношение числа рождений нейтронов к числу актов их гибели в результате поглощения и утечки.

Реактор с использованием отражателя уменьшает критические размеры активной зоны, выравнивает распределение потока нейтронов и увеличивает удельную мощность реактора, отнесённую к 1кг загруженного в реактор ядерного горючего. Расчёт размеров активной зоны производится сложными методами.

Реакторы характеризуются циклами и типами реакторов.

Топливным циклом или циклом ядерного горючего называются совокупность последовательных превращений топлива в реакторе, а так же при переработке облученного топлива после его извлечения из реактора с целью выделения вторичного топлива и невыгоревшего первичного топлива.

Топливный цикл определяет тип ядерного реактора: реактор –конвектор;

Реактор-размножитель; реакторы на быстрых, промежуточных и тепловых нейтронах, реактор на твёрдом, жидком и газообразном топливе; гомогенные реакторы и гетерогенные реакторы и другие.


Принципы регулирования мощности реактора.

Энергетический реактор должен работать устойчиво на различных уровнях мощности. Изменения уровня тепловыделения в реакторе должно происходить достаточно быстро, но плавно, без скачков разгона мощности.

Система регулирования призвана компенсировать изменения коэффициент К (реактивности), возникающие при изменениях в режиме, включая пуск и остановку. Для этого в процессе работы в активную зону вводят по мере необходимости графитовые стержни, материал которых сильно поглощает тепловые нейтроны. Для уменьшения или увеличения мощности соответственно выводят или вводят указанные стержни, регулируя тем самым коэффициент К. Стержни используются как регулирующие, так и компенсирующие, а в целом их можно назвать управляющими или защитными.

Классификация реакторов.

Ядерные реакторы могут классифицироваться по различным признакам:

1) По назначению

2) По уровню энергии нейтронов, вызывающих большинство делений ядер топлива;

3) По виду замедлителя нейтронов

4) По виду и агрегатному состоянию теплоносителя;

5) По признаку воспроизводства ядерного топлива;

6) По принципу размещения ядерного топлива в замедлителе,

7) По агрегатному состоянию ядерного топлива.

Реакторы, предназначенные для выработки электрической или тепловой энергии называются энергетическими, так же реакторы бывают технологические и двухцелевые.

По уровню энергии реакторы подразделяются: на тепловых нейтронах, на быстрых нейтронах, на промежуточных нейтронах.

По виду замедлителей нейтронов: на водяные, тяжёловодные, графитовые, органические, бериллиевые.

По виду теплоносителя: на водяные, тяжёловодные, жидкометаллические, органические, газовые.

По принципу воспроизводства ядерного топлива:

Реакторы на чистом делящем изотопе. С воспроизводством ядерного топлива (регенеративные) с расширенным воспроизводством (реакторы-размножители).

По принципу ядерного горючего: гетерогенные и гомогенные

По принципу агрегатного состояния делящего материала:

В форме твердого тела, реже в виде жидкости и газа.

Если ограничиться основными признаками, то может быть предложена следующая система обозначения типов реакторов

1. Реактор с водой в качестве замедлителя и теплоносителя на слабообогащённом уране (ВВР- Уно) или водо-водяной реактор (ВВР).

2. Реактор с тяжёлой водой в качестве замедлителя и обычной водой в качестве теплоносителя на природном уране. Обозначение: тяжёло-водяной реактор на природном уране (ТВР-Уп) или тяжёловодно-водяной реактор (ТВР) При использовании тяжёлой воды и в качестве

Теплоносителя будет (ТТР)

3. Реактор с графитом в качестве замедлителя и водой в качестве теплоносителя на слабо обогащённом уране будет называться граффито-водяной на слабо обогащённом уране (ГВР-Уно) или граффито-водяной реактор (ГВР)

4. Реактор с графитом в виде замедлителя и газом в качестве теплоносителя на природном уране (ГГР-Уп) или граффито-газовый реактор (ГГР)

5. Реактор с кипящей водой в качестве замедлителя теплоносителя может быть обозначен ВВКР, такой же реактор на тяжёлой воде – ТТКР.

6. Реактор с графитом в качестве замедлителя и натрием в качестве теплоносителя может быть обозначен ГНР

7. Реактор с органическим замедлителем и теплоносителем может быть обозначен ООР

Основные характеристики реакторов АЭС

АЭС
Характеристики реакторов С реакторами на тепловых нейтронах С реакторами на быстрых нейтронах
Тип реактора ВВЭР РБМК РБН
Теплоноситель Вода вода Жидкий Na, K, вода
Замедлитель Вода графит отсутствует
Вид ядерного топлива Слабо обогащённый уран Слабо обогащённый уран Высоко обогащённый уран или Pu-239
Обогащение ядерного топлива по U-235, % 3-4 2-3 90
Количество контуров циркуляции теплоносителя 2 1 3
Давление пара перед турбиной, МПа 4,0-6,0 6,0-6,5 6,0-6,5
КПД АЭС ≈30% 30-33% ≈35%

Конструктивная схема реактора.

Основными конструктивными узлами гетерогенного ядерного реактора являются: корпус; активная зона, состоящая из тепловыделяющих элементов, замедлителя и системы управления и защиты; отражатель нейтронов; система отвода тепла; тепловая защита; биологическая защита; система загрузки и выгрузки тепловыделяющих элементов. В реакторах - размножителях имеется также зона воспроизводства ядерного горючего со своей системой отвода тепла. В гомогенных реакторов вместо тепловыделяющих элементов имеется резервуар с раствором солей или взвесью делящихся материалов теплоносителя.

1-ый тип(а) – реактор, в котором замедлителем и отражателем нейтронов является графит. Графитовые блоки (параллепипеды призмы с внутренними каналами и размещёнными в них тепловыделяющими элементами образуют активную зону, обычно имеющую форму цилиндра или многогранной призмы. Каналы в графитовых блоках проходят по всей высоте активной зоны. В эти каналы вставляются трубы для размещения тепловыделяющих элементов. По кольцевой щели между тепловыделяющими элементами и направляющими трубами протекает теплоноситель. В качестве теплоносителя может использоваться вода, жидкие металл или газ. Часть каналов активной зоны, используется для размещения стержней системы управления и защиты. Вокруг активной зоны расположен отражатель нейтронов, также в виде кладки графитовых блоков. Каналы тепловыделяющих элементов проходят как через кладку активной зоны, так и через кладку отражателя.

При работе реактора графит нагревается до температуры при которой может окисляться. Для предотвращения окисления графитовая кладка заключается в стальной герметичный кожух, заполняемый нейтральным газом (азот, гелий). Каналы тепловыделяющих элементов могут размещаться как вертикально, так и горизонтально. Снаружи стального кожуха размещается биологическая защита – специальный бетон. Между кожухом и бетоном может быть предусмотрен канал охлаждения бетона по которому циркулирует охлаждающая среда (воздух, вода). В случае применения натрия в качестве теплоносителя, графитовые блоки покрываются защитной оболочкой (например из циркония). Для предотвращения пропитывания графита натрием при протечке его из контура циркуляции. Автоматические приводы регулирующих стержней получают импульс от ионизационных камер или счётчиков нейтронов. В ионизационной камере, заполненной газом, быстрые заряженные частицы вызывают падение напряжения между электродами к которым приложено разность потенцалов. Падении напряжение в цепи электродов пропорционально изменению плотности потока частиц, ионизирующих газ. Поверхности электродов ионизационных камер, покрытые бором поглощают нейтроны, вызывая поток альфа-частиц также производящих ионизацию. В таких приборах изменения силы тока в цепи пропорционально изменению плотности потока нейтронов. Слабый ток, возникающий в цепи ионизационной камеры усиливается электронными или другими усилителями. При увеличении потока нейтронов в реакторе сила тока в цепи, ионизационной камеры увеличивается и сервомотор автоматического регулирования опускает регулирующий стержень в активную зону на соответствующую глубину. При ослаблении потока нейтронов в реакторе происходит уменьшение силы тока в цепи ионизационной камеры и привод регулирующих стержней автоматически поднимает их на соответствующую высоту.

Графитово-водяной реактор при охлаждении некипящей водой имеет относительно низкую температуру воды на выходе, что обуславливает также относительно низкие начальные параметры генерируемого пара и соответственно низкий КПД установки.

В случае перегрева пара в активной зоне реактора КПД установки может быть значительно повышено. Применение газа или жидких металлов реактора по схеме 1 также позволит получить более высокие параметры вырабатывания пара и соответственно более высокий КПД установки. Граффито-водяные, водо-водяные и граффито-жидкометаллические реакторы требуют применения обогащённого урана.


На рисунке 1 показана принципиальная схема АЭС РБМК.



1 Рис.1

1-Графитовые блоки

(Замедлитель)

2-активная зона реактора

2.Тяжёловодно-газовый реактор 2 может работать на природном уране. Тепловыделяющий элемент такого реактора покружено в стальной или алюминиевый бак, заполненный до определённого уровня тяжёлой водой. Вокруг бака расположен графитовый отражатель – биологическая защита. Тепловыделяющие элементы имеют внутренние каналы для прохода газа, отводящего тепло. Тяжёлая вода, служащая замедлителем также нагревается и требует своей системы охлаждения. Это осуществляется циркуляцией тяжёлой воды с помощью специального насоса и охлаждением её в теплообменнике проточной водой. Такой реактор имеет достаточно высокий КПД и относительно низкую топливную составляющую стоимость вырабатываемой электроэнергии.

Поскольку топливом служит природный уран, высокая стоимость тяжёлой воды и потери тепла, связанной её охлаждением являются его недостатками.

3. На рис в) изображён водо-водяной или тяжёловодный реактор в котором замедлителем и теплоносителем служит вода или тяжёлая вода.(ВВЭР).

4 Рис г) даёт представление о конструктивной схеме реактора кипящего типа. Этот тип даёт возможность изготавливать их с меньшей толщиной стенки, а так же их положительным свойством является возможность саморегулирования.

5. реактор- размножитель работает на быстрых нейтронах т.е. на обогащённом уране. Данные типы реакторы требует более высокой биологической защиты, и соответственно применение более дорогих материалов.

6. гомогенный реактор где при использовании природного урана замедлителем может быть только тяжёлая вода, при обогащённом уране обычная вода. Здесь деление ядер на быстрых нейтронах отсутствует. Относительно низкая плотность урана и резонансное поглощение требуют более высокой степени обогащения топлива делящимся изотопом.

Все конструкции реакторов имеют как и положительные, так и отрицательные стороны, которые всегда необходимо учитывать при проектировании с учётом привязки строительства к конкретным региональным условиям исходя из возможностей доставки сырья, опасностью загрязнения окружающей среды, источников водоснабжения и грунтовых вод.

При проектировании АЭС используется сложные математические расчёты, которые не смотря на современные аналитические возможности вычислительной техники не могут дать гарантированной правильности всех параметров. Поэтому все расчёты перепроверяются экспериментальной проверкой.

Это особенно важно при проверке критических размеров реактора на природном уране. Если довериться только теоретическим расчётом, то можно допустить серьёзный просчёт, исправить который будет весьма дорого и сложно.


Периодическая перезагрузка АЭС требует очень тщательной подготовке и проводится как правило при остановленном реакторе, так как повышенная радиоактивность требует отсутствия персонала в период загрузки и выгрузки, не смотря на то, что схема перезагрузки происходит в автоматическом режиме с использованием специальных контейнеров обеспечивающих не только автоматический режим, но и все требования техники безопасности с постоянным охлаждением.

Контейнера имеют толстые свинцовые оболочки, обеспечивающие допустимый фон радиации

Конструкции оборудования АЭС.

Граффито-водяные реакторы.

Граффито-водяной реактор АЭС АН является первым реактором, созданным для производства электроэнергии.

В центральной части графитовой кладки, высотой 4,6 м и диаметром 3м имеется 157 вертикальных отверстий диаметром 65 мм расположенных по треугольной решётке шагом 120 мм. В них расположены каналы с ТВЕ. Активная зона, в которой размещены каналы с ТВЕ, имеет диаметр 1.6метра и высоту 1.7 метра. Она окружена со всех сторон графитовым отражателем толщиной 0.7 м, графитовая кладка заключена в стальной корпус, приваренный к нижней стальной плите. Сверху кладка закрыта массивной чугунной плитой, через которую проходят каналы ТВЕ и системы регулирования. Стальной корпус заполнен инертным газом, предохраняющим графит от окисления. Вокруг корпуса расположен кольцеобразный резервуар водяной защиты с толщиной слоя воды 1м. Реактор расположен в бетонной шахте с толщиной стен 3м, служащий внешним слоем биологической защиты. В водяной защите расположено 12 вертикальных труб, в которых на высоте активной зоны расположены ионизационные камеры. В активной зоне имеется 128 каналов с ТВЕ. Конструкция такого канала показана на рисунке 2.

Цилиндрический канал диаметром 65 мм собран из графитовых втулок с пятью отверстиями, через которые проходят трубчатые ТВЕ. Вода опускается по центральной трубке сверху вниз и возвращается вверх по 4-ём трубчатым ТВЕ. Уран расположен снаружи этих трубок на высоте 1.7м. Тепловой поток каналов в центральной части активной зоны достигает 1.8 * 106 Ккал/м2 в час.

24 канала заняты стержнями регулирования из карбида бора. Четыре стержня автоматического регулирования мощности реактора размещены по переферии активной зоны. Восемнадцать стержней ручного регулирования размещены в центре активной зоны (6шт) по переферии (12шт.) Они служат для компенсировании запаса реактивности.

Имеются так же аварийный стержни для экстренного останова реактора. Все каналы стержней охлаждаются водой под давлением 5атм. И температурой от3 0 до 60 градусов. Тепловая мощность такого реактора равна 30 Мвт. Общая загрузка реактора составляет 550 кг урана содержащего 5% урана 235 т.е.количество урана 235 загружаемого в реактор составляет 27,5 кг. Расход урана за сутки составляет около 30 гр.

Водоводяной реактор АЭС (ВВЭР)

Водоводяные реакторы с водой под давлением имеют корпус, выдерживающий рабочее давление теплоносителя (рис.3) В активную зону реактора загружаются тепловыделяющие сборки с ядерным топливом. Тепло, выделяющееся при делении ядерного топлива, нагревает воду, находящуюся в корпусе реактора, образуется слаборадиактивный, насыщенный пар, поступающий в парогенератор второго контура. В парогенераторе слаборадиоактивный пар отдаёт тепло воде, образуется насыщенный нерадиоактивный пар, направляемый в паровую турбину. При передпче тепла радиоактивного пара нерадиоактивной воде второго контура в парогенераторе возникают дополнительные (По сравнению с РБМК), потери тепла, что снижает КПД АЭС с реакторами ВВЭР до 30%.

АЭС с реакторами на быстрых нейтронах имеют трёхмерную схему: в первом контуре теплоносителем является радиоактивный натрий (или калий), во втором – нерадиоактивная натрий (или калий), в третьем – нерадиоактивная вода, нагреваемая в парогенераторе теплом нерадиоактивного натрия второго контура. Нерадиоактивный насыщенный пар третьего контура поступает в паровую турбину. КПД АЭС с реакторами на быстрых нейтронах составляет около 35%.

1 контур 2 контур

ЭГ Рис.3

ГЦН 1 Принципиальная тепловая схема

ГЦН1, ГЦН2 -

Главные циркуляционные

Насосы первого и АЭС. 1-металлический корпус

Второго контуров ГЦН 2реактора; 2-активная зона;

3-вода; 4-парогенератор.

На схеме обозначены:

1. Ядерный реактор с первичной биологической защитой.

2. Вторичная биологическая защита.

3. Турбина.

4. Генератор.

5. Конденсатор.

6. Циркуляционные насосы.

7. Регенеративный теплообменник.

8. Резервуар с водой.

9. Парогенератор.

10. Промежуточный теплообменник.

Т – повышающий трансформатор.

ТСН – трансформатор собственных нужд.

РУ ВН – распределительное устройство высокого напряжения (110 кВ и выше).

РУ СН – распределительное устройство собственных нужд.

I; II; III – контуры АЭС.

Установка, в которой происходит управляемая цепная ядерная реакция, называется ядерным реактором 1 . В него загружается ядерное топливо, например – уран –238. Ядерный реактор служит для нагрева теплоносителя и представляет из себя, в принципе, котёл.

Биологическая защита 2 выполняет функции изолятора реактора от окружающего пространства для того, чтобы в него не проникли мощные потоки нейтронов, альфа-, бета-, гамма- лучи и осколки деления. Биологическая защита предназначена для создания безопасных условий работы обслуживающего персонала.

Турбина 3 предназначена для преобразования энергии пара в механическую энергию вращения ротора электрического генератора. Генератор 4 вырабатывает электрическую энергию, которая поступает на повышающий трансформатор Т , где преобразуется до необходимых величин для дальнейшей передачи в линии электропередач. Часть энергии также передаётся на ТСН – понижающий трансформатор собственных нужд.

Отработанный в турбине пар поступает в конденсатор. Конденсатор 5 служит для охлаждения пара, который, конденсируясь, затем подаётся циркуляционным насосом 6 через регенеративный обменник 7 в парогенератор 9 . В регенеративном обменнике вода охлаждается до исходной величины.

Разогретый в реакторе теплоноситель первого контура (Na ) отдаёт тепло в промежуточном теплообменнике 10 теплоносителю второго контура (Na ). А тот, в свою очередь, отдаёт тепло рабочему телу(H2 O ) в парогенераторе.

Циркуляционные насосы служат для движения теплоносителя в контурах схемы, а также для подачи охлаждающей воды в конденсатор из резервуара 8 .

Таким образом, принципиально АЭС отличаются от ТЭС только тем, что рабочее тело на них получает тепло в парогенераторе при сжигании ядерного топлива в ядерном реакторе, а не органического топлива в котлах, как это имеет место на ТЭС.

Многоконтурная схема АЭС обеспечивает радиационную безопасность и создаёт удобства для обслуживания оборудования. Выбор числа контуров определяется в зависимости от типа реактора и свойств теплоносителя, характеризующих его пригодность для использования в качестве рабочего тела в турбине.

Теплообменники АЭС.

Теплообменник атомных электростанций имеют специфические конструктивные особенности и значительно большие удельные тепловые нагрузки по сравнению с теплообменниками обычных электростанций. Уменьшение габаритов теплообменников реакторной установки позволяет уменьшить размеры и вес биологической защиты, а следовательно, и капиталовложения в строительство АЭС.

Теплообменники, по которым протекает радиоактивная и коррозирующая среда, выполняются из сравнительно дорогой нержавеющей стали. В целях экономии этой стали поверхности нагрева, трубные доски и корпуса теплообменников стремятся выполнять с минимальными толщинами, не допуская излишних запасов прочности, но обеспечивая необходимую надёжность длительной их работы.

Парогенераторная установка состоит из горизонтальных парогенераторов насыщенного пара давлением 32 а и 231о С.

Вода из реактора с температурой 275оС подаётся в вертикальный коллектор диаметром 750 мм из которого распределяется по пакетам трубок, далее поступает к циркулярному насосу контура охлаждения.

Трубные пакеты погружены в водяной объём второго контура, заполняющая межтрубное пространство вода, испаряется, полученный пар проходит через паросепарирующие устройства и далее поступает в сборный паропровод к турбине.

Поверхность нагрева парогенератора 1290 м2. Она состоит из двух коридорных пакетов по 975 трубок диаметром 21 мм с толщиной стенок 1,5мм. Шаг трубок в пакете 36 мм. В трубном пакете имеется 5 вертикальных коридоров, улучшающих естественную циркуляцию.

Турбомашины АЭС.

На действующих, строящих и проектируемых атомных электростанциях применяются конденсационные паровые турбины.

На АЭС с высокотемпературными реакторами применяются специальные типы турбин, работающих на насыщенном или слабо перегретом паре.

В корпусе турбины есть специальные выточки для улавливания капельной влаги. Сепараторы капельной влаги могут выполняться центробежными и инерционными. Проходя по каналам двухходового винта в потоке пара, капли влаги центробежными силами отбрасываются на стенки корпуса и стекают к дренажному отверстию.

При повороте потока пара на 180о, при входе во внутреннею трубу сепаратора также развивается центробежная сила, отбрасывающая капли влаги вниз.

В сепараторах инерционного типа отделение капельной влаги от потока происходит при ударе потока о решётку полос.

Вспомогательное оборудование.

Вспомогательное оборудование АЭС газодувки, насосы, арматура, измерительные приборы имеют специфические особенности, которые должны обеспечивать более высокую надежность обеспечивающие более длительный срок работы без профилактики. Обеспечивающие исключение утечки радиоактивного газа. Повышенную стойкость к коррозии. Насосы безсальниковой конструкции, должны обеспечивать высокую герметичность.

Вся арматура выполняется с сильфонным уплотнением штока.

Вся измерительная аппаратура имеет так же свои конструктивные особенности, обеспечивающие более высокую точность и надёжность.

Компоновка оборудования АЭС.

Основные требования к компоновке оборудования:

1.Простота технологической схемы обеспечивающая прямые и короткие трубопроводы, магистрали водяные и газовые. Трассы кабелей

2.Удобство и простота обслуживания, удобный доступ ко всем агрегатам.

3.Хорошее освещение.

4. Компактное расположение агрегатов

5. Вентиляция обеспечивающая быстрое и захватывающие все объёмы здания.

6. Повышенная жёсткость фундамента.

7. Должны быть предусмотрены транспортные передвижные устройства, обеспечивающие дезактивацию помещений своим оборудованием и приспособлениями.

Вопросы техники безопасности на АЭС.

Вопросам техники безопасности на АЭС отводится крайне большое внимание. Безопасность персонала АЭС и населения прилегающих к её территории районов обеспечивается системой мероприятий, предусматриваемых проектирование АЭС и выборе площадки для её строительства. Максимальная допустимая радиоактивность воды и степень загрязнения водоёмов регламентируются «Санитарными правилами перевозки, хранения, учёта и работы с радиоактивными веществами», утверждёнными Главным санинспектором России.

Этими правилами установлены временные пределы допустимых уровней излучения.

Система биологической безопасности и дозиметрического контроля АЭС, принятая для АЭС АН России строго контролируется вышестоящими органами.

Основными источниками радиоактивных загрязнений на АЭС являются вода контура охлаждения реактора и азот, заполняющий графитовую кладку.

Активность выбрасываемого воздуха в атмосферу определяется активностью аргона.

Жестко проверяется на допустимые дозы активности вода с её долгоживущими сухими остатками натрия, марганца, кальция и другими составляющими

Радиоактивный воздух из надреактного пространства разбавляется в общей вентиляционной системе, пока активность не упадёт до допустимой нормы.

Выбрасываемая радиоактивная вода проходит обработку в специальном цехе, подвергаясь выдержке, разбавлению и очистке примесей включая выпаривание.

Сбрасываемая вода первого контура имеет малую активность и содержит короткоживущие изотопы. Она подвергается выдержке и разбавлению. Время выдержки составляет 10-15суток. За этот период радиоактивность снижается до допустимой нормы питьевой воды и спускается в канализацию. В частности в здании АЭС АН России имеется 28 вентиляционных систем вентиляции воздуха из одного помещения в другое.

Особое внимание уделено пространству над реактором, откуда радиоактивный газ может проникать в реакторный зал. Воздух между кожухом реактора и водяной защитой не вентилируется, так он является высоко радиоактивным и выброс его в атмосферу через трубу не допустим, во избежания загрязнения окружающей среды.

Имеется система дозиметрического контроля как стационарная, так и индивидуальная. Кроме этого, постоянно ведётся забор воздуха из различных помещений с проверкой его на радиоактивность в отдельных лабораториях дозиметрического контроля. Весь работающий персонал имеет карманные фотокассеты и карманные дозиметры.

При ремонте и обслуживании оборудования, вводится регламентируемое время работы персонала. При работе используются: пневмокостюмы, противогазы, перчатки, очки и другие средства индивидуальной защиты.

Производится предварительная дезактивация оборудования и мест намечаемых работ.

Для избежания выноса радиоактивности на спецодежде организуются спецсанпосты.

При выходе из зоны радиоактивности, персонал снимает защитную спецодежду, принимает душ и переодевается в чистую одежду.

Использованная одежда отдаётся в специальную прачечную или уничтожается.

Нарушения правил дозиметрического контроля может привести к непоправимым последствиям.

Мировая история эксплуатации АЭС знает много примеров, которые имели место в странах Канады, США. Франции, Англии. Югославии. Свежи ещё события Чернобыльской аварии. Все случаи приводившее к тем или сложным, а зачастую и тяжёлым последствием были причиной определённых не доработок, подчас халатности или игнорирования правил эксплуатации АЭС.


Литература.

1. Атомные энергетические станции………………… А.А. Канаев 1961 г.

2. Почти всё о цепном реакторе………………………… Л.Матвеев 1990 г.

3. Атомная энергетика…………………………… А.П. Александров 1978 г.

4. Энергия будущего……………………………………А И.Проценко 1985 г.

5. Экономика электроэнергетики …………………… Фомина 2005 г.

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНСТИТУТ ДИСТАНЦИОННОГО ОБРАЗОВАНИЯ
Контрольная работа по дисциплине
РПС и регионалистика

Тема «РАЗМЕЩЕНИЕ АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ»

Выполнил: Студент специальности «Финансы и кредит»

1. Атомные электростанции

Атомные электростанции (АЭС) – это по существу тепловые электростанции, которые используют тепловую энергию ядерных реакций.

Ядерное топливо используют обычно в твердом виде. Его заключают в предохранительную оболочку. Такого рода тепловыделяющие элементы называют твэлами, их устанавливают в рабочих каналах активной зоны ректора. Тепловая энергия, выделяющиеся при реакции деления, отводится из активной зоны реактора с помощью теплоносителя, который прокачивают под давлением через каждый рабочий канал или через всю активную зону. Наиболее распространенным теплоносителем является вода, которую тщательно очищают.

Реакторы с водяным теплоносителем могут работать в водном или паровом режиме. Во втором случае пар получается непосредственно в активной зоне реактора.

При деление ядер урана или плутония образуются быстрые нейтроны, энергия которых велика. В природном или слабообогащенном уране, где содержание 235 U невелико, цепная реакция на быстрых нейтронах не развивается. Поэтому быстрые нейтроны замедляются до тепловых (медленных) нейтронов. В качестве замедлителей используют вещества, которые содержат элементы с малой атомной массой, обладающие низкой поглощающей способностью по отношению к нейтронам. Основными замедлителями являются вода, тяжелая вода, графит.

В настоящее время наиболее освоены реакторы на тепловых нейтронах. Такие реакторы конструктивно проще и легче управляемы по сравнению с реакторами на быстрых нейтронах. Однако перспективным направлением является использование реакторов на быстрых нейтронах с расширенным воспроизводством ядерного горючего – плутония; таким образом, может быть использована большая часть 238 U.

В России сейчас работают 10 АЭС, на которых установлен 31 энергоблок. Их суммарная электрическая мощность (около 23200 МВт) делится примерно поровну между двумя группами реакторов: водо-водяными (ВВЭР-440, ВВЭР-1000) и кипящими канальными водо-графитовыми (РБМК-1000, ЭГП-6). На Белоярской АЭС работает единственный в мире энергетический реактор на быстрых нейтронах БН-600.

На атомных станциях России используют ядерные реакторы следующих основных типов:

РБМК (реактор большой мощности, канальный) – реактор на тепловых нейтронах, водо-графитовый;

ВВЭР (водо-водяной энергетический реактор) – реактор на тепловых нейтронах, корпусного типа;

БН – реактор на быстрых нейтронах с жидкометаллическим натриевым теплоносителем.

Проводя сравнение различных типов ядерных реакторов, стоит остановиться на двух наиболее распространенных в нашей стране и в мире типах этих аппаратов: ВВЭР (Водо-Водяной Энергетический реактор) и РБМК (Реактор Большой Мощности Канальный).

Наиболее принципиальные различия: ВВЭР - корпусной реактор (давление держится корпусом реактора); РБМК- канальный реактор (давление держится независимо в каждом канале); в ВВЭР теплоноситель и замедлитель - одна и та же вода (дополнительный замедлитель не вводится), в РБМК замедлитель - графит, а теплоноситель - вода; в ВВЭР пар образуется во втором корпусе парогенератора, в РБМК пар образуется непосредственно в активной зоне реактора (кипящий реактор) и прямо идет на турбину - нет второго контура. Из-за различного строения активных зон параметры работы у этих реакторов также разные.

Для безопасности реактора имеет значение такой параметр, как коэффициент реактивности - его можно образно представить как величину, показывающую, как изменения того или иного другого параметра реактора повлияет на интенсивность цепной реакции в нем. Если этот коэффициент положительный, то при увеличении параметра, по которому приводится коэффициент, цепная реакция в реакторе при отсутствии каких-либо других воздействий будет нарастать и в конце станет возможным переход ее в неуправляемую и каскадно нарастающую - произойдет разгон реактора. При разгоне реактора происходит интенсивное тепловыделение, приводящее к расплавлению тепловыделителей, стеканию их расплава в нижнюю часть активной зоны, что может привести к разрушению корпуса реактора и выбросу радиоактивных веществ в окружающую среду.

В реакторе ВВЭР при появлении в активной зоне пара или при повышении температуры теплоносителя, приводящего к снижению его плотности, падает количество столкновений нейтронов с атомами молекул теплоносителя, уменьшается замедление нейтронов, вследствие чего все они уходят за пределы активной зоны, не реагируя с другими ядрами. Реактор останавливается.

В реакторе РБМК при вскипании воды или повышении ее температуры, приводящее к снижению ее плотности, уходит ее нейтронопоглощающее действие (замедлитель в этом реакторе и так уже есть, а у пара коэффициент поглощения нейтронов гораздо ниже, чем у воды). В реакторе нарастает цепная реакция, и он разгоняется, что в свою очередь, приводит к дальнейшему повышению температуры воды и ее вскипанию.

Следовательно, при возникновении нештатных ситуаций работы реактора, сопровождающихся его разгоном, реактор ВВЭР заглохнет, а реактор РБМК продолжит разгон с нарастающей интенсивностью, что может привести к очень интенсивному тепловыделению, результатом которого будет расплавление активной зоны реактора. Данное последствие очень опасно, так как при контакте расплавленных циркониевых оболочек с водой происходит разложение ее на водород и кислород, образующих крайне взрывчатый гремучий газ, при взрыве которого неизбежно разрушение активной зоны и выброс радиоактивных топлива и графита в окружающую среду. Именно по такому пути развивались события при аварии на Чернобыльской АЭС.

Если подвести итог, то реактор РБМК требует меньшего обогащения топлива, обладает лучшими возможностями по наработке делящегося материала (плутония), имеет непрерывный эксплуатационный цикл, но более потенциально опасен в эксплуатации. Степень этой опасности зависит от качества систем аварийной защиты и квалификации эксплуатационного персонала. Кроме того, вследствие отсутствия второго контура у РБМК больше радиационные выбросы в атмосферу в течение эксплуатации.

Схемы АЭС. Технологическая схема АЭС зависит от типа реактора, вида теплоносителя и замедлителя, а также от ряда других факторов. Схема может быть одноконтурной, двухконтурной и трехконтурной. На рисунке 1 в качестве примера представлена (1 – реактор; 2 – парогенератор; 3 – турбина; 4 – трансформатор; 5 – генератор; 6 – конденсатор турбины; 7 – конденсатный (питательный) насос; 8 – главный циркулярный насос

двухконтурная схема АЭС для электростанции с реактором типа ВВЭР.

Атомные электростанции строятся по блочному принципу как в тепломеханической, так и в электрической части.

Ядерное топливо обладает очень высокой теплотворной способностью (1кг 235 U заменяет 2 900 т угля), поэтому АЭС особенно эффективно в районах, бедных топливными ресурсами, на пример в европейской части России.

Перспективными являются АЭС с реакторами на быстрых нейтронах, которые могут использоваться для получения теплоты и электроэнергии, а также я для воспроизводства ядерного топлива.

Применение атомной энергии позволяет расширить энергетические ресурсы. Тем самым способствуя сохранению ресурсов органического топлива, снизить стоимость электрической энергии, что особенно важно для районов, удаленных от источников топлива, снизить загрязнение атмосферы, разгрузить транспорт, занятый перевозкой топлива, помочь в снабжение электроэнергией и теплотой производств, использующих новые технологии (например, занятых опреснением морской воды и расширением ресурсов пресной воды).

1. Бадев В.В., Егоров Ю.А., С.В. Казаков «Охрана окружающей среды при эксплуатации АЭС», Москва, Энергоатомиздат, 1990 г.

2. Ефимова Н. Ядерная безопасность: у кого искать защиты? / «Экономика и время», №11 от 20 марта 1999.

3. Израэль Ю.А.«Проблемы всестороннего анализа окружающей среды и принципы комплексного мониторинга» Ленинград, 1988 г.

4. Никитин Д., Новиков Ю. «Окружающая среда и человек», 1986 г.

5. Ольсевич О.Я., Гудков А.А. Критика экологической критики. - М.: Мысль, 1990. - 213с.

6. Ядерная и термоядерная энергетика будущего/ Под ред. Чуянова В.А. - М.: Энергоатомиздат, 1987. - 192с.

7. Ядерный след/ Губарев В.С., Камиока И., Лаговский И.К. и др.; сост. Малкин Г. - М.: ИздАТ, 1992. - 256с.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Доклад по физике на тему:

Атомная э лектростанция

Атомная электростанция (АЭС) - электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор. Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию, В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233 U, 235 U, 239 Pu) При делении 1 г изотопов урана или плутония высвобождается 22 500 квт * ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива.

Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.) существенно превышают энергоресурсы природных запасов органического, топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, края уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

Первая в мире АЭС опытно-промышленного назначения мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

атомная электростанция реактор

В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт). В том же году развернулось строительство Белоярской АЭС, а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС -- перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

Принципиальная схема АЭС с ядерным реактором, имеющим водяное охлаждение. Тепло, выделяется в активной зоне реактора, теплоносителем вбирается водой (теплоносителем) 1-г контура, которая прокачивается через реактор циркуляционным насосом г Нагретая вода из реактора поступав в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образуется пар поступает в турбину 4.

Наиболее часто на АЭС применяют 4 типа реакторов на тепловых нейтронах: 1) водо-водяные с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя 4) графито-газовые с газовым теплоносителем и графитовым замедлителем.

Выбор преимущественно применяемого типа реактора определяется главным образом накопленным опытом в реактороносителе а также наличием необходимого промышленного оборудования, сырьевых запасов и т. л. В России строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

В зависимости от вида и агрегатного состояния теплоносителя создается тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой темп-рой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой темп-рой собственно ядерного горючего, а также свойствами теплоносителя, принятого для данного типа реактора. На АЭС. тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и темп-рой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур -- пароводяной. При реакторах с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева.

В высокотемпературных графито-газовых реакторах возможно применение обычного газотурбинного цикла. Реактор в этом случае выполняет роль камеры сгорания.

При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, и топливо выгорает. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшее топливо переносят в бассейн выдержки, а затем направляют на переработку.

К реактору и обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляции контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

В зависимости от конструктивного исполнения реакторы имеют отличит, особенности: в корпусных реакторах топливо и замедлитель расположены внутри корпуса, несущего полное давление теплоносителя; в канальных реакторах топливо, охлаждаемые теплоносителем, устанавливаются в спец. трубах-каналах, пронизывающих замедлитель, заключённый в тонкостенный кожух. Такие реакторы применяются в России (Сибирская, Белоярская АЭС и др.),

Для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпантиновый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление не плотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются, Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС спец. системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки. За выполнением правил радиационной безопасности персоналом АЭС следит служба дозиметрического контроля.

При авариях в системе охлаждения реактора для исключения перегрева и нарушения герметичности оболочек ТВЭЛов предусматривают быстрое (в течение несколько секунд) глушение ядерной реакции; аварийная система расхолаживания имеет автономные источники питания.

Наличие биологической защиты, систем спец. вентиляции и аварийного расхолаживания и службы дозиметрического контроля позволяет полностью обезопасить обслуживающий персонал АЭС от вредных воздействий радиоактивного облучения.

Оборудование машинного зала АЭС аналогично оборудованию машинного зала ТЭС. Отличит, особенность большинства АЭС -- использование пара сравнительно низких параметров, насыщенного или слабо перегретого.

При этом для исключения эрозионного повреждения лопаток последних ступеней турбины частицами влаги, содержащейся в пару, в турбине устанавливают сепарирующие устройства. Иногда необходимо применение выносных сепараторов и промежуточных перегревателей пара. В связи с тем что теплоноситель и содержащиеся в нём примеси при прохождении через активную зону реактора активируются, конструктивное решение оборудования машинного зала и системы охлаждения конденсатора турбины одноконтурных АЭС должно полностью исключать возможность утечки теплоносителя. На двухконтурных АЭС с высокими параметрами пара подобные требования к оборудованию машинного зала не предъявляются.

В число специфичных требований к компоновке оборудования АЭС входят: минимально возможная протяжённость коммуникаций, связанных с радиоактивными средами, повышенная жёсткость фундаментов и несущих конструкций реактора, надёжная организация вентиляции помещений. показан разрез главного корпуса Белоярской АЭС с канальным графито-водным реактором. В реакторном зале размещены: реактор с биологической защитой, запасные ТВЭЛы и аппаратура контроля. АЭС скомпонована по блочному принципу реактор--турбина. В машинном зале расположены турбогенераторы и обслуживающие их системы. Между машинным II реакторным залами размещены вспомогательные оборудование и системы управления станцией.

Экономичность АЭС определяется её основным техническим показателями: единичная мощность реактора, энергонапряжённость активной зоны, глубина выгорания ядерного горючего, коэффецента использования установленной мощности АЭС за год. С ростом мощности АЭС удельные капиталовложения в псе (стоимость установленного кет) снижаются более резко, чем это имеет место для ТЭС. В этом главная причина стремления к сооружению крупных АЭС с большой единичной мощностью блоков. Для экономики АЭС характерно, что доля топливной составляющей в себестоимости вырабатываемой электроэнергии 30 - 40% (на ТЭС 60--70%). Поэтому крупные АЭС наиболее распространены в промышленно развитых районах с ограниченными запасами обычного топлива, а АЭС небольшой мощности -- в труднодоступных или отдалённых районах, напр. АЭС в пос. Билибино (Якутия) с электрической мощностью типового блока 12 Мвт. Часть тепловой мощности реактора этой АЭС (29 Мвт) расходуется на теплоснабжение. Наряду с выработкой электроэнергии АЭС используются также для опреснения морской воды. Так, Шевченковская АЭС у нас в Казахстане электрической мощностью 150 Мвт рассчитана на опреснение (методом дистилляции) за сутки до 150 000 т воды из Каспийского м.

В большинстве промышленно развитых стран (Россия, США, Англия, Франция, Канада, ФРГ, Япония, ГДР и др.) мощность действующих и строящихся АЭС к 1980 доведена до десятков ГВт. По данным Международного атомного агентства ООН, опубликованным в 1967, установленная мощность всех АЭС в мире к 1980 достигла 300 ГВт.

На 3-й Международной научно-технической конференции по мирному использованию атомной энергии (1964, Женева) было отмечено, что широкое освоение ядерной энергии стало ключевой проблемой для большинства стран. Состоявшаяся в Москве в августе 1968 7-я Мировая энергетическим конференция (МИРЭК-УП) подтвердила актуальность проблем выбора направления развития ядерной энергетики на следующем этапе (условно 1980--2000), когда АЭС станет одним из оси. производителей электроэнергии.

За годы, прошедшие со времени пуска в эксплуатацию первой АЭС, было создано несколько конструкций ядерных реакторов, на основе которых началось широкое развитие атомной энергетики в нашей стране.

Персонал 9 российских АЭС составляет 40.6 тыс. человек или 4% от общего числа населения занятого в энергетике. 11.8% или 119.6 млрд. КВт.час. всей электроэнергии, произведенной в России выработано на АЭС. Только на АЭС рост производства электроэнергии сохранился: в 2000 году произве 118% от объема 1999 года.

АЭС, являющиеся наиболее современным видом электростанций имеют ряд существенных преимуществ перед другими видами электростанций: при нормальных условиях функционирования они обсолютно не загрязняют окружающую среду, не требуют привязки к источнику сырья и соответственно могут быть размещены практически везде, новые энергоблоки имеют мощность практичеки равную мощности средней ГЭС, однако коэффициэнт использования установленной мощности на АЭС (80%) значительно превышает этот показатель у ГЭС или ТЭС. Об экономичности и эффективности атомных электростанций может говорить тот факт, что из 1 кг урана можно получить столько же теплоты, сколько при сжигании примерно 3000 т каменного угля.

Значительных недостатков АЭС при нормальных условиях функционирования практически не имеют. Однако нельзя не заметить опасность АЭС при возможных форс-мажорных обстоятельствах:землетрясениях, ураганах, и т. п. - здесь старые модели энергоблоков представляют потенциальную опасность радиационного заражения территорий из-за неконтролируемого перегрева реактора.

Литература

1. Баланчевадзе В. И., Барановский А. И. и др.; Под ред. А. Ф. Дьякова. Энергетика сегодня и завтра. - М.: Энергоатомиздат, 1990. - 344 с.

2. Более чем достаточно. Оптимистический взгляд на будущее энергетики мира/ Под ред. Р. Кларка: Пер. с англ. - М.: Энергоатомиздат, 1994. - 215 с.

3. Источники энергии. Факты, проблемы, решения. - М.: Наука и техника, 1997. - 110 с.

4. Кириллин В. А. Энергетика. Главные проблемы: В вопросах и ответах. - М.: Знание, 1997. - 128 с.

5. Мировая энергетика: прогноз развития до 2020 г./ Пер. с англ. под ред. Ю. Н. Старшикова. - М.: Энергия, 1990. - 256 с.

6. Нетрадиционные источники энергии. - М.: Знание, 1982. - 120 с.

7. Подгорный А. Н. Водородная энергетика. - М.: Наука, 1988.- 96 с.

8. Энергетические ресурсы мира/ Под ред. П.С.Непорожнего, В.И. Попкова. - М.: Энергоатомиздат, 1995. - 232 с.

9. Юдасин Л. С.. Энергетика: проблемы и надежды. - М.: Просвещение, 1990. - 207с.

Размещено на Allbest.ru

Подобные документы

    Устройство атомной электростанции (АЭС), в которой атомная энергия преобразуется в электрическую. Особенности преобразования в электроэнергию тепла, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов.

    презентация , добавлен 17.02.2013

    Гидравлическая электростанция (ГЭС) как комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. Характеристика тепловой электростанции (ТЭС). Особенности работы атомной электростанции (АЭС).

    контрольная работа , добавлен 10.11.2009

    Принцип работы атомной электростанции, ее достоинства и недостатки. Классификация по типу реакторов, по виду отпускаемой энергии. Получение электроэнергии на атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Крупнейшие АЭС РФ.

    презентация , добавлен 22.11.2011

    Описание работы Запорожской атомной электростанции. Принцип действия энергетических реакторов. Технология выработки электроэнергии. Подсистемы контроля: внутриреакторного и нейтронного потока. Определение объектов анализируемой измерительной информации.

    реферат , добавлен 06.05.2014

    Атомная энергия. Мощность Преобразование энергии. Ее виды и источники. История развития атомной энергетики. Радиационная безопасность атомных станций с опредленными типами реакторов. Модернизация и продление сроков эксплуатации энергоблоков АЭС.

    реферат , добавлен 24.06.2008

    Схема работы атомных электростанций. Типы и конструкции реакторов. Проблема утилизации ядерных отходов. Принцип действия термоядерной установки. История создания и разработка проекта строительства первой океанской электростанции, перспективы применения.

    реферат , добавлен 22.01.2011

    Атомная энергетика Японии. Причины и последствия катастрофы на атомной электростанции Фукусима-1. Рассмотрение повреждений реактора. Утечка радиации, эвакуационные мероприятия. Меры для уменьшения экологического риска после аварии на АЭС Фукусима-1.

    реферат , добавлен 15.12.2015

    Введение в экспуатацию Белоярской атомной электростанции - станции, имеющей энергоблоки разных типов. Необходимость расширения топливной базы атомной энергетики и минимизации радиоактивных отходов за счёт организации замкнутого ядерно-топливного цикла.

    презентация , добавлен 29.09.2013

    Назначение вентиляционных установок и воздуховодов атомных электростанций. Основы проектирования и примерная схема специальной технологической вентиляции реакторного отделения. Обеспечение допустимых температур воздуха в производственных помещениях.

    курсовая работа , добавлен 25.01.2013

    Характеристика атомных электростанций России, их месторасположение, суммарная мощность блоков. Схема работы АЭС. Основной элемент реактора. Ведущие факторы, обеспечивающие высокую степень безопасности АЭС России. Описание остановки цепной реакции.

Одной из самых глобальных проблем человечества является энергетика. Гражданская инфраструктура, промышленность, вооруженные силы - все это требует огромного количества электричества, а для его выработки ежегодно выделяется масса полезных ископаемых. Проблема состоит в том, что эти ресурсы не бесконечны, и уже сейчас, пока ситуация более или менее стабильна, нужно задуматься о будущем. Огромные надежды возлагались на альтернативное, чистое электричество, однако, как показывает практика, конечный результат далек от желаемого. Затраты на солнечные или ветряные электростанции огромны, а количество энергии - минимально. И именно поэтому сейчас атомные электростанции считаются самым перспективным вариантом дальнейшего развития.

История АЭС

Первые идеи касательно использования атома для выработки электроэнергии появились в СССР примерно в 40-х годах XX века, почти за 10 лет до создания собственного оружия массового поражения на этой основе. В 1948 году был разработан принцип работы АЭС и тогда же получилось впервые в мире запитать приборы от атомной энергии. В 1950-м США заканчивает строительство небольшого атомного реактора, который можно считать на тот момент единственной электростанцией на планете такого типа. Правда, он был экспериментальным и мощности выдавал всего 800 Вт. В то же время в СССР закладывается фундамент первой в мире полноценной АЭС, хотя после введения в строй она все же не выдавала электричество в промышленных масштабах. Использовался этот реактор больше для оттачивания технологии.

С этого момента началось массовое строительство атомных электростанций по всему миру. Помимо традиционных лидеров в этой «гонке», США и СССР, первые реакторы появлялись в:

  • 1956 г. - Великобритания.
  • 1959 г. - Франция.
  • 1961 г. - Германия.
  • 1962 г. - Канада.
  • 1964 г. - Швеция.
  • 1966 г. - Япония.

Количество возводимых АЭС постоянно увеличивалось, вплоть до Чернобыльской катастрофы, после чего строительство начало замораживаться и постепенно многие страны стали отказываться от атомной энергии. На данный момент новые такие электростанции появляются в основном в России и Китае. Некоторые страны, ранее планировавшие перейти на энергию другого типа, постепенно возвращаются в программу и в ближайшем будущем возможен очередной скачок строительства АЭС. Это обязательный этап развития человечества, по крайней мере до тех пор, пока не будут найдены другие эффективные варианты производства энергии.

Особенности атомной энергетики

Самый главный плюс заключается в выработке огромного количества энергии с минимальными затратами топлива при практически полностью отсутствующих загрязнениях. Принцип работы атомного реактора АЭС основан на простом паровом двигателе и в качестве основного элемента использует воду (не считая самого топлива), потому с точки зрения экологии вред получается минимальным. Потенциальная опасность электростанций такого типа сильно преувеличена. Причины катастрофы в Чернобыле до сих пор достоверно не установлены (об этом ниже) и более того, вся собранная в рамках расследования информация позволила модернизировать уже имеющиеся станции, исключив даже маловероятные варианты выбросов радиации. Экологи иногда говорят, что такие станции являются мощным источником теплового загрязнения, но это тоже не совсем верно. Действительно, горячая вода из второго контура попадает в водоемы, но чаще всего используются их искусственные варианты, созданные специально для этого, а в остальных случаях доля такого повышения температуры не идет ни в какое сравнение с загрязнениями от других источников энергии.

Проблема топлива

Не последнюю роль в популярности АЭС играет топливо - уран-235. Его требуется значительно меньше, чем любых других видов с одновременным огромным выбросом энергии. Принцип работы реактора АЭС подразумевает использование этого топлива в виде специальных «таблеток», уложенных в стержни. Фактически, единственная сложность в данном случае заключается в создании именно такой формы. Тем не менее в последнее время начинает появляться информация, что текущих мировых запасов тоже не хватит надолго. Но и это уже предусмотрено. Самые новые трехконтурные реакторы работают на уране-238, которого очень много, и проблема дефицита топлива исчезнет надолго.

Принцип работы двухконтурной АЭС

Как уже было сказано выше, в основе лежит обычный паровой двигатель. Если кратко, принцип работы АЭС заключается в нагреве воды из первого контура, которая в свою очередь нагревает воду второго контура до состояния пара. Он проступает в турбину, вращая лопасти, в результате чего генератор вырабатывает электричество. «Отработанный» пар попадает в конденсатор и вновь превращается в воду. Таким образом получается практически замкнутый цикл. В теории все это могло работать еще проще, при помощи только одного контура, однако это уже действительно небезопасно, так как вода в нем в теории может подвергаться заражению, что исключено при использовании стандартной для большинства АЭС системы с двумя изолированными друг от друга циклами воды.

Принцип работы трехконтурной АЭС

Это уже более современные электростанции, которые работают на уране-238. Его запасы составляют более 99 % всех радиоактивных элементов в мире (отсюда и следуют огромные перспективы использования). Принцип работы и устройство АЭС такого типа заключается уже в наличии целых трех контуров и активном применении жидкого натрия. В целом, все остается примерно таким же, но с небольшими дополнениями. В первом контуре, нагреваясь непосредственно от реактора, циркулирует этот жидкий натрий при высокой температуре. Второй круг нагревается от первого и также использует ту же самую жидкость, но не настолько разогретую. И только потом, уже в третьем контуре, используется вода, которая нагревается от второго до состояния пара и вращает турбину. Система получается более сложной технологически, но построить такую АЭС нужно только один раз, а потом останется только наслаждаться плодами труда.

Чернобыль

Принцип работы АЭС «Чернобыль», как считается, стал главной причиной катастрофы. Официально существуют две версии случившегося. По одной проблема возникла из-за неправильных действий операторов реактора. По второй - из-за неудачной конструкции электростанции. Однако принцип работы Чернобыльской АЭС использовался и в других станциях такого типа, которые исправно функционируют и по сей день. Есть мнение, что произошла цепь случайностей, повторить которую практически невозможно. Это и небольшое землетрясение в том районе, проведение эксперимента с реактором, мелкие проблемы самой конструкции и так далее. Все вместе это стало причиной взрыва. Тем не менее до сих пор неизвестна причина, вызвавшая резкое возрастание мощности работы реактора тогда, когда он этого не должен был делать. Было даже мнение о возможной диверсии, но доказать что-либо не удалось и по сей день.

Фукусима

Это еще один пример глобальной катастрофы с участием атомной электростанции. И в данном случае также причиной стала цепь случайностей. Станция была надежно защищена от землетрясений и цунами, которые не редкость на Японском побережье. Мало кто мог предположить, что оба эти события произойдут одновременно. Принцип работы генератора АЭС «Фукусима» предполагал использование внешних источников энергии для поддержания в работоспособности всего комплекса безопасности. Это разумная мера, так как получить энергию от самой станции в процессе аварии было бы затруднительно. Из-за землетрясения и цунами все эти источники вышли из строя, из-за чего реакторы расплавились и произошла катастрофа. Сейчас проводятся меры по устранению ущерба. По оценкам специалистов, на это уйдет еще около 40 лет.

Несмотря на всю свою эффективность, атомная энергия все еще остается достаточно дорогой, ведь принципы работы парогенератора АЭС и остальных ее компонентов подразумевает огромные затраты на строительство, которые нужно окупить. Сейчас электричество от угля и нефти пока еще обходится дешевле, но эти ресурсы уже в ближайшие десятилетия закончатся, и в течение следующих нескольких лет атомная энергия будет обходиться дешевле, чем что-либо. На данный момент экологически чистое электричество из альтернативных источников энергии (ветряные и солнечные электростанции) обходится примерно в 20 раз дороже.

Считается, что принцип работы АЭС не дает строить такие станции быстро. Это неправда. На возведение среднестатистического объекта подобного типа уходит примерно 5 лет.

Станции отлично защищены не только от потенциальных выбросов радиации, но и от большинства внешних факторов. К примеру, если бы террористы вместо башен-близнецов выбрали любую АЭС, то они смогли бы нанести только минимальный вред окружающей инфраструктуре, что никак не повлияет на работу реактора.

Итоги

Принцип работы АЭС практически не отличается от принципов работы большинства других традиционных электростанций. Везде используется энергия пара. В гидроэлектростанциях применяется напор текущей воды, и даже в тех моделях, которые работают от энергии солнца, также используется жидкость, нагреваемая до состояния кипения и вращающая турбины. Единственное исключение из этого правила - ветряные станции, в которых лопасти крутятся за счет движения воздушных масс.