Окислительно- восстановительные реакции в природе. Окислительно-восстановительные реакции Определение рН в лабораторном практикуме

1 слайд

2 слайд

Понятие окислительно-восстановительных реакций Химические реакции, протекающие с изменением степени окисления элементов, входящих в состав реагирующих веществ, называются окислительно-восстановительными

3 слайд

Окисление - процесс отдачи электронов атомом, молекулой или ионом. Атом превращается в положительно заряженный ион: Zn0 – 2e → Zn2+ отрицательно заряженный ион становится нейтральным атомом: 2Cl- -2e →Cl20 S2- -2e →S0 Величина положительно заряженного иона (атома) увеличивается соответственно числу отданных электронов: Fe2+ -1e →Fe3+ Mn+2 -2e →Mn+4

4 слайд

Восстановление - процесс присоединения электронов атомом, молекулой или ионом. Атом превращается в отрицательно заряженный ион S0 + 2e → S2− Br0 + e → Br − Величина положительно заряженного иона (атома) уменьшается соответственно числу присоединенных электронов: Mn+7 + 5e → Mn+2 S+6 + 2e → S+4 − или он может перейти в нейтральный атом: Н+ + е → Н0 Cu2+ + 2e → Cu0

5 слайд

Восстановители - атомы, молекулы или ионы, отдающие электроны. Они в процессе ОВР окисляются Типичные восстановители: ● атомы металлов с большими атомными радиусами (I-А, II-А группы), а так же Fe, Al, Zn ● простые вещества-неметаллы: водород, углерод, бор; ● отрицательно заряженные ионы: Cl−, Br−, I−, S2−, N−3. Не являются восстановителем фторид- ионы F−. ● ионы металлов в низшей с.о.: Fe2+,Cu+,Mn2+,Cr3+; ● сложные ионы и молекулы, содержащие атомы с промежуточной с.о.: SO32−, NO2−; СО, MnO2 и др.

6 слайд

Окислители - атомы, молекулы или ионы, присоединяющие электроны. Они в процессе ОВР восстанавливаются Типичные окислители: ● атомы неметаллов VII-А, VI-А, V-A группы в составе простых веществ ● ионы металлов в высшей с.о.: Cu2+, Fe3+,Ag+ … ● сложные ионы и молекулы, содержащие атомы с высшей и высокой с.о.: SO42−, NO3−, MnO4−, СlО3−, Cr2O72-, SO3, MnO2 и др.

7 слайд

На проявление окислительно-восстановительных свойств влияет такой фактор, как устойчивость молекулы или иона. Чем прочнее частица, тем в меньшей степени она проявляет окислительно-восстановительные свойства

8 слайд

Например, азот имеет высокую электроотрицательность и мог бы быть сильным окислителем в виде простого вещества, но в его молекуле тройная связь, молекула очень устойчивая, азот химически пассивен.

9 слайд

Или НСLO более сильный окислитель в растворе, чем НСLO4, так как НСLO – менее устойчивая кислота.

10 слайд

Если химический элемент находится в промежуточной степени окисления, то он проявляет свойства и окислителя, и восстановителя.

11 слайд

Степени окисления серы: -2,0,+4,+6 Н2S-2 - восстановитель 2Н2S+3O2=2H2O+2SO2 S0,S+4O2 – окислитель и восстановитель S+O2=SO2 2SO2+O2=2SO3 (восстановитель) S+2Na=Na2S SO2+2H2S=3S+2H2O (окислитель) Н2S+6O4 - окислитель Cu+2H2SO4=CuSO4+SO2+2H2O

12 слайд

Определение степеней окисления атомов химических элементов С.о. атомов х/э в составе простого вущества = 0 Алгебраическая сумма с.о. всех элементов в составе иона равна заряду иона Алгебраическая сумма с.о. всех элементов в составе сложного вещества равна 0. K+1 Mn+7 O4-2 1+х+4(-2)=0

13 слайд

Классификация окислительно-восстановительных реакций Реакции межмолекулярного окисления 2Al0 + 3Cl20 → 2Al+3 Cl3-1 Реакции внутримолекулярного окисления 2KCl+5O3-2 →2KCl-1 + 3O20 Реакции диспропорционирования, дисмутации (самоокисления-самовосстановления): 3Cl20 + 6KOH (гор.) →KCl+5O3 +5KCl-1+3H2O 2N+4O2+ H2O →HN+3O2 + HN+5O3

14 слайд

Это полезно знать Степени окисления элементов в составе аниона соли такие же, как и в кислоте, например: (NH4)2Cr2+6O7 и H2Cr2+6O7 Степень окисления кислорода в пероксидах равна -1 Степень окисления серы в некоторых сульфидах равна -1, например: FeS2 Фтор- единственный неметалл, не имеющий в соединениях положительной степени окисления В соединениях NH3, CH4 и др. знак электроположительного элемента водорода на втором месте

15 слайд

Окислительные свойства концентрированной серной кислоты Продукты восстановления серы: H2SO4 + оч.акт. металл (Mg, Li, Na…) → H2S H2SO4 + акт. металл (Mn, Fe, Zn…) → S H2SO4 + неакт. металл (Cu, Ag, Sb…) → SO2 H2SO4 + HBr → SO2 H2SO4 + неметаллы (C, P, S…) → SO2 Примечание: часто возможно образование смеси этих продуктов в различных пропорциях

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

  • 1.ОВР.Классификация ОВР.
  • 2.Метод электронного баланса.
  • 3.Метод полуреакций.
Цели и задачи:
  • Закрепить умения учащихся применять понятие «степень окисления» на практике.
  • Обобщать и дополнять знания учащихся об опорных понятиях теории ОВР.
  • Совершенствовать умение учащихся применять эти понятия к объяснению фактов.
Цели и задачи:
  • Познакомить учащихся с сущностью метода полуреакций.
  • Сформировать умение выражать сущность окислительно-восстановительных реакций, протекающих в растворах, ионно-электронным методом.
Окислитель и восстановитель
  • Окислителем называют реагент, который принимает электроны в ходе окислительно-восстановительной реакции.
  • Восстановителем называют реагент, который отдает электроны в ходе окислительно-восстановительной реакции.
ПРОЦЕСС ОКИСЛЕНИЯ И ВОССТАНОВЛЕНИЯ
  • Окислением называют процесс отдачи электронов атомом, молекулой или ионом, который сопровождается повышением степени окисления .
  • Восстановлением называют процесс присоединения электронов атомом, молекулой или ионом, который сопровождается понижением степени окисления.
Правила определения функции соединения в окислительно-восстановительных реакциях.
  • 1. Если элемент проявляет в соединении высшую степень окисления, то это соединение может быть окислителем.
  • 2. Если элемент проявляет в соединении низшую степени окисления, то это соединение может быть восстановителем.
  • 3. Если элемент проявляет в соединении промежуточную степень окисления, то это соединение может быть как воcстановителем, так и окислителем.
  • Задание:
  • Предскажите функции веществ в окислительно-восстановительных реакциях:
Важнейшие окислители и восстановители Опорные понятия теории ОВР
  • Вопросы:
  • 1. Что называется процессом восстановления?
  • 2. Как изменяется степень окисления элемента при восстановлении?
  • 3. Что называется процессом окисления?
  • 4. Как изменяется степень окисления элемента при окислении?
  • 5. Определите понятие «восстановитель».
  • 6. Определите понятие «окислитель».
  • 7. Как предсказать функцию вещества по степени окисления элемента?
  • 8. Назовите важнейшие восстановители и окислители.
  • 9.Какие реакции называются окислительно-восстановительными?
Химические реакии Химические реакции
  • По изменению степени окисления атомов элементов
  • Окислительно-восстановительные
  • Без изменения степени окисления атомов элементов
  • К ним относятся все реакции ионного обмена, а также многие реакции соединения
ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ
  • Окислительно-восстановительными
  • называют реакции, которые сопровождаются изменением степеней окисления химических элементов, входящих в состав реагентов.
Классификация ОВР
  • реакции межмолекулярного окисления-восстановления
  • реакции внутримолекулярного окисления-восстановления,
  • реакции диспропорционирования, дисмутации или самоокисления-самовосстановления
Межмолекулярные реакции:
  • Частицы- доноры электронов (восстановители) – и частицы- акцепторы электронов (окислители) – находятся в разных веществах.
  • К этому типу относится большинство ОВР.
Внутримолекулярные реакции
  • Донор электронов - восстановитель- и акцептор электронов – окислитель – находятся в одном и том же веществе.
Реакции дисмутации, или диспропорционирования, или самоокисления-самовосстановления
  • Атомы одного и того же элемента в веществе выполняют одновременно функции и доноров электронов (восстановителей) и акцепторов электронов (окислителей).
  • Эти реакции возможны для веществ, содержащих атомы химических элементов в промежуточной степени окисления.
Составление окислительно-восстановительных реакций
  • Для составления окислительно-восстановительных реакций используют:
  • 1) метод электронного баланса
  • 2) Составление уравнений окислительно-восстановительных реакций методом полуреакций, или ионно-электронным методом
Составление окислительно-восстановительных реакций методом электронного баланса
  • Метод основан на сравнении степеней окисления атомов в исходных веществах и продуктах реакции и на балансировании числа электронов, смещаемых от восстановителя к окислителю.
  • Метод применяют для составления уравнений реакций, протекающих в любых фазах. В этом универсальность и удобство метода.
  • Недостаток метода - при выражении сущности реакций, протекающих в растворах, не отражается существование реальных частиц.
Алгоритмическое предписание для составления уравнений окислительно-восстановительных реакций методом электронного баланса
  • 1.Составить схему реакции.
  • 2. Определить степени окисления элементов в реагентах и продуктах реакции.
  • 3. Определить, является реакция окислительно-восстановительной или она протекает без изменения степеней окисления элементов. В первом случае выполнить все последующие операции.
  • 4. Подчеркнуть элементы, степени, окисления которых изменяются.
  • 5. Определить, какой элемент окисляется (его степень окисления повышается) и какой элемент восстанавливается (его степень окисления понижается) в процессе реакции.
  • 6. В левой части схемы обозначить с помощью стрелок процесс окисления (смещения электронов от атома элемента) и процесс восстановления (смещения электронов к атому элемента)
  • 7. Определить восстановитель (атом элемента, от которого смещаются электроны) и окислитель (атом элемента, к которому смещаются электроны).
Алгоритмическое предписание для составления уравнений окислительно-восстановительных реакций методом электронного баланса
  • 8. Сбалансировать число электронов между окислителем и восстановителем.
  • 9. Определить коэффициенты для окислителя и восстановителя, продуктов окисления и восстановления.
  • 10. Записать коэффициент перед формулой вещества, определяющего среду раствора.
  • 11. Проверить уравнение реакции.
Составление уравнений окислительно-восстановительных реакций методом полуреакций, или ионно-электронным методом
  • Метод основан на составлении ионно-электронных уравнений для процессов окисления и восстановления с учетом реально существующих частиц и последующим суммированием их в общее уравнение.
  • Метод применяется для выражения сущности окислительно-восстановительных реакций, протекающих только в растворах.
  • Достоинства метода.
  • 1. В электронно-ионных уравнениях полуреакций записываются ионы, реально существующие в водном растворе, а не условные частицы. (Например, ионы а не атом азота со степенью окисления +3 и атом серы со степенью окисления +4.)
  • 2. Понятие «степень окисления» не используется.
  • 3. При использовании этого метода не нужно знать все вещества: они определяются при выводе уравнения реакции.
  • 4. Видна роль среды как активного участника всего процесса.
Основные этапы составления уравнений окислительно-восстановительных реакций ионно-электронным методом
  • (на примере взаимодействия цинка с концентрированной азотной кислотой)
  • 1. Записываем ионную схему процесса, которая включает только восстановитель и продукт его окисления, и окислитель и продукт его восстановления:
Источник
  • ЕГЭ. ХИМИЯ: Универсальный справочник/ О.В.Мешкова.- М.: ЭКСМО, 2010.- 368с.

Окисление - процесс отдачи электронов атомом, молекулой или ионом. Атом превращается в положительно заряженный ион: Zn 0 – 2e Zn 2+ отрицательно заряженный ион становится нейтральным атомом: 2Cl - -2e Cl 2 0 S 2- -2e S 0 Величина положительно заряженного иона (атома) увеличивается соответственно числу отданных электронов: Fe 2+ -1e Fe 3+ Mn +2 -2e Mn +4


Восстановление - процесс присоединения электронов атомом, молекулой или ионом. Атом превращается в отрицательно заряженный ион S 0 + 2e S 2 Br 0 + e Br Величина положительно заряженного иона (атома) уменьшается соответственно числу присоединенных электронов: Mn e Mn +2 S e S +4 или он может перейти в нейтральный атом: Н + + е Н 0 Cu e Cu 0


Восстановители - атомы, молекулы или ионы, отдающие электроны. Они в процессе ОВР окисляются Типичные восстановители: атомы металлов с большими атомными радиусами (I-А, II-А группы), а так же Fe, Al, Zn простые вещества-неметаллы: водород, углерод, бор; отрицательно заряженные ионы: Cl, Br, I, S 2, N 3. Не являются восстановителем фторид- ионы F. ионы металлов в низшей с.о.: Fe 2+,Cu +,Mn 2+,Cr 3+ ; сложные ионы и молекулы, содержащие атомы с промежуточной с.о.: SO 3 2, NO 2 ; СО, MnO 2 и др.


Окислители - атомы, молекулы или ионы, присоединяющие электроны. Они в процессе ОВР восстанавливаются Типичные окислители: атомы неметаллов VII-А, VI-А, V-A группы в составе простых веществ ионы металлов в высшей с.о.: Cu 2+, Fe 3+,Ag + … сложные ионы и молекулы, содержащие атомы с высшей и высокой с.о.: SO 4 2, NO 3, MnO 4, СlО 3, Cr 2 O 7 2-, SO 3, MnO 2 и др.










Степени окисления серы: -2,0,+4,+6 Н 2 S -2 - восстановитель 2Н 2 S+3O 2 =2H 2 O+2SO 2 S 0,S +4 O 2 – окислитель и восстановитель S+O 2 =SO 2 2SO 2 +O 2 =2SO 3 (восстановитель) S+2Na=Na 2 S SO 2 +2H 2 S=3S+2H 2 O (окислитель) Н 2 S +6 O 4 - окислитель Cu+2H 2 SO 4 =CuSO 4 +SO 2 +2H 2 O


Определение степеней окисления атомов химических элементов С.о. атомов х/э в составе простого вущества = 0 Алгебраическая сумма с.о. всех элементов в составе иона равна заряду иона Алгебраическая сумма с.о. всех элементов в составе сложного вещества равна 0. K +1 Mn +7 O х+4(-2)=0


Классификация окислительно- восстановительных реакций Реакции межмолекулярного окисления 2Al 0 + 3Cl 2 0 2Al +3 Cl 3 -1 Реакции внутримолекулярного окисления 2KCl +5 O KCl O 2 0 Реакции диспропорционирования, дисмутации (самоокисления-самовосстановления): 3Cl KOH (гор.) KCl +5 O 3 +5KCl -1 +3H 2 O 2N +4 O 2 + H 2 O HN +3 O 2 + HN +5 O 3


Это полезно знать Степени окисления элементов в составе аниона соли такие же, как и в кислоте, например: (NH 4) 2 Cr 2 +6 O 7 и H 2 Cr 2 +6 O 7 Степень окисления кислорода в пероксидах равна -1 Степень окисления серы в некоторых сульфидах равна -1, например: FeS 2 Фтор- единственный неметалл, не имеющий в соединениях положительной степени окисления В соединениях NH 3, CH 4 и др. знак электроположительного элемента водорода на втором месте


Окислительные свойства концентрированной серной кислоты Продукты восстановления серы: H 2 SO 4 + оч.акт. металл (Mg, Li, Na…) H 2 S H 2 SO 4 + акт. металл (Mn, Fe, Zn…) S H 2 SO 4 + неакт. металл (Cu, Ag, Sb…) SO 2 H 2 SO 4 + HBr SO 2 H 2 SO 4 + неметаллы (C, P, S…) SO 2 Примечание: часто возможно образование смеси этих продуктов в различных пропорциях


Пероксид водорода в окислительно- восстановительных реакциях Среда раствора Окисление (Н 2 О 2 -восстановитель) Восстановление (Н 2 О 2 -окислитель) кислая Н 2 О 2 -2еО 2 + 2Н + (О – 2еО 2 0) Н 2 О 2 +2Н + +2е2Н 2 О (О е2О - 2) щелочная Н 2 О 2 +2ОН -О 2 +2Н 2 О (О – 2еО 2 0) Н 2 О 2 +2е2ОН - (О е2О - 2) нейтральная Н 2 О 2 - 2еО 2 + 2Н + (О – 2еО 2 0) Н 2 О 2 +2е2ОН - (О е2О - 2)


Азотная кислота в окислительно- восстановительных реакциях Продукты восстановления азота: Концентрированная HNO 3: N +5 +1e N +4 (NO 2) (Ni, Cu, Ag, Hg; C, S, P, As, Se); пассивирует Fe, Al, Cr Разбавленная HNO 3: N +5 +3e N +2 (NO) (Металлы в ЭХРНМ Al …Cu; неметаллы S, P, As, Se) Разбавленная HNO 3: N +5 +4e N +1 (N 2 O) Ca, Mg, Zn Разбавленная HNO 3: N +5 +5e N 0 (N 2) Очень разбавленная: N e N -3 (NH 4 NO 3) (активные металлы в ЭХРНМ до Al)


Значение ОВР ОВР чрезвычайно распространены. С ними связаны процессы обмена веществ в живых организмах, дыхание, гниение, брожение, фотосинтез. ОВР обеспечивают круговорот веществ в природе. Их можно наблюдать при сгорании топлива, коррозии и выплавке металлов. С их помощью получают щелочи, кислоты и другие ценные химические вещества. ОВР лежат в основе преобразования энергии взаимодействующих химических веществ в эклектическую энергию в аккумуляторах гальванических элементах.


Окислительно- восстановительные реакции самые распространенные и играют большую роль в природе. Они являются основой жизни на Земле, так как с ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений и нервная деятельность человека и животных.




Дыхание В процессе дыхания углевод, жиры и белки в реакциях биологического окисления и постепенной перестройки органического скелета отдают спои атомы водорода с образованием восстановленных форм. Последние при окислении в дыхательной цепи освобождают энергию, которая аккумулируется в активной форме в сопряженных реакциях синтеза АТФ.




Химическая коррозия металлов После разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Выполнила: Учитель химии Баймухаметова Батила Тургинбаевна Окислительно-восстановительные реакции

2 слайд

Описание слайда:

Девиз урока «Кто-то теряет, а кто-то находит…» Сами, трудясь, вы сделаете все и для близких людей и для себя, а если при труде успеха не будет, неудача – не беда, попробуйте ещё. Д. И. Менделеев.

3 слайд

Описание слайда:

4 слайд

Описание слайда:

Тема урока: «Окислительно-восстановительные реакции» Цель: Познакомиться с окислительно-восстановитель-ными реакциями и выяснить, в чём отличие обменных реакций от окислительно-восстановительных реакций. Научиться определять в реакциях окислитель и восстановитель. Научиться составлять схемы процессов отдачи и принятия электронов. Познакомиться с важнейшими окислительно-восстановительными реакциями, встречающимися в природе.

5 слайд

Описание слайда:

Быть может, эти электроны- Миры, где пять материков, Искусства, знанья, войны, троны И память сорока веков! Еще, быть может, каждый атом- Вселенная, где сто планет; Там - все, что здесь, в объёме сжатом, Но также то, чего здесь нет. В. Брюсосова.

6 слайд

Описание слайда:

Что такое степень окисления? Степень окисления – это условный заряд атома химического элемента в соединении, вычисленный на основе предположения, что все соединения состоят только из ионов. Степень окисления может быть положительной, отрицательной или равняться нулю, что зависит от природы соответствующих соединений. Одни элементы имеют: постоянные степени окисления, другие - переменные. Элементы с постоянной положительной степенью окисления относятся - щелочные металлы: Li+1, Na+1, K+1, Rb+1, Cs+1, Fr+1, следующие элементы II группы периодической системы: Ве+2, Mg+2, Ca+2, Sr+2, Ва+2, Ra+2, Zn+2, а также элемент III А группы - А1+3 и некоторые другие. Металлы в соединениях всегда имеют положительную степень окисления. Из неметаллов постоянную отрицательную степень окисления (-1) имеет F. В простых веществах, образованных атомами металлов или неметаллов, степени окисления элементов равны нулю, например: Na°, Al°, Fe°, Н2, О2, F2, Cl2, Br2. Для водорода характерны степени окисления: +1 (Н20), -1 (NaH). Для кислорода характерны степени окисления: -2 (Н20), -1 (Н2О2), +2 (OF2).

7 слайд

Описание слайда:

Важнейшие восстановители и окислители Восстановители: Окислители: Металлы-простые вещества Водород Углерод Оксид углерода(II) (CO) Сероводород (H2S) Оксид серы(IV) (SO2) Сернистая кислота H2SO3 и ее соли Галогеноводородные кислоты и их соли Катионы металлов в промежуточных степенях окисления:SnCl2, FeCl2, MnSO4, Cr2(SO4)3 Азотистая кислота HNO2 Аммиак NH3 Оксид азота(II) (NO) Галогены Перманганат калия(KMnO4) Манганаткалия (K2MnO4) Оксид марганца (IV)(MnO2) Дихромат калия (K2Cr2O7) Азотная кислота (HNO3) Серная кислота (конц.H2SO4) Оксид меди(II) (CuO) Оксид свинца(IV) (PbO2) Пероксид водорода (H2O2) Хлорид железа(III) (FeCl3) Органическиенитросоединения

8 слайд

Описание слайда:

Степень окисления марганца в соединении перманганата калия KMnO4. 1.Степень окисления калия +1, кислорода -2. 2.Подсчитаем число отрицательных зарядов: 4 (-2) = - 8 3.Число положительных зарядов у марганца – 1. 4.Составляем следующее уравнение: (+1) + х+ (-2)*4 =0 1+ х - 8=0 Х = 8 - 1 = 7 Х= +7 +7 – это степень окисления марганца в перманганате калия.

9 слайд

Описание слайда:

Правила определения степеней окисления 1 .Степень окисления элемента в простом веществе равно 0. Например: Са, Н2, Cl2, Na. 2 .Степень окисления фтора во всех соединениях, кроме F2, равна – 1. Пример: S+6F6-1 3 .Степень окисления кислорода во всех соединениях, кроме О2, О3, F2-1O+2 и перекисных соединениях Na2+1 O-12; Н2+1О-12 равна –2 Примеры: Na2O-2, BaO-2, CO2-2. 4 .Степень окисления водорода равна +1, если в соединениях есть хотя бы один неметалл, -1 в соединениях с металлами (гидридах) 5. Степень окисления О в Н2 Примеры: C-4H4+1 Ba+2H2-1 H2 Степень окисления металлов всегда положительна (кроме простых веществ). Степень окисления металлов главных подгрупп всегда равна номеру группы. Степень окисления побочных подгрупп может принимать разные значения. Примеры: Na+ Cl-, Al2+3O3-2, Cr2+3 O3-2, Cr+2O-2. 6 . Максимальная положительная степень окисления равна номеру группы (исключения Cu+2, Au+3). Минимальная степень окисления равна номеру группы минус восемь. Примеры: H+1N+5O-23, N-3H+13. 7 . Сумма степеней окисления атомов в молекуле (ионе) равна 0 (заряду иона).

10 слайд

Описание слайда:

Лабораторная работа Правила техники безопасности. Опыт 1. Проведите химическую реакцию между растворами сульфата меди (II) и гидроксида натрия. Опыт 2. 1.Поместите в раствор сульфата меди (II) железный гвоздь. 2.Составьте уравнения химических реакций. 3.Определите тип каждой химической реакции. 4.Определите степень окисления атома каждого химического элемента до реакции и после реакции. 5.Подумайте, чем отличаются эти реакции?

11 слайд

Описание слайда:

Ответы: Cu+2S+6O4-2 +2Na +1O-2H+1Cu +2(O -2H+1)2+Na2 +1S +6O4-2 – реакция обмена Cu+2S+6O4-2 + Fe0 Fe+2 S+6O4 -2+Сu0 – реакция замещения Реакция №2 отличается от реакции №1 тем, что в данном случае изменяется степень окисления у атомов химических элементов до реакции и после реакции. Обратите внимание на это важное отличие двух реакций. Вторая реакция является ОВР. Подчеркнем в уравнении реакции символы химических элементов, которые поменяли степень окисления. Выпишем их и укажем, что атомы сделали со своими электронами (Отдали или приняли?), т.е. переходы электронов. Cu+2 + 2 е-  Сu0 – окислитель, восстанавливается Fe0 - 2 е-  Fe+2 - восстановитель, окисляется

12 слайд

Описание слайда:

Классификация окислительно-восстановительных реакций 1.Межмолекулярные окислительно-восстановительные реакции Окислитель и восстановитель находятся в разных веществах; обмен электронами в этих реакциях происходит между различными атомами или молекулами: 2Са0 + O20 → 2 Са+2O-2 Са - восстановитель; O2 - окислитель Cu+2O + C+2O → Cu0 + C+4O2 CO - восстановитель; CuO – окислитель Zn0 + 2HCl → Zn+2Cl2 + H20 Zn - восстановитель; HСl - окислитель Mn+4O2 + 2KI-1 + 2H2SO4 → I20 + K2SO4 + Mn+2SO4 + 2H2O KI - восстановитель; MnO2 - окислитель.

13 слайд

Описание слайда:

2.Внутримолекулярные окислительно - восстановительные реакции Во внутримолекулярных реакциях окислитель и восстановитель находятся в одной и той же молекуле. Внутримолекулярные реакции протекают, как правило, при термическом разложении веществ, содержащих окислитель и восстановитель. 4Na2Cr2O7 → 4Na2CrO4 + 2Cr2O3 + 3O2 Cr+6- окислитель; О-2 - восстановитель

14 слайд

Описание слайда:

3.Реакции диспропорционирования Окислительно - восстановительные реакции, в которых один элемент одновременно повышает и понижает степень окисления. 3S + 6NaOH → Na2SO3 + 2Na2S + 3H2O Сера в степени окисления 0 является и окислителем и восстановителем. 4.Реакции компропорционирования Окислительно-восстановительные реакции, в которых атомы одного элемента в различных степенях окисления в результате реакции приобретают одну степень окисления. 5NaBr + NaBrO3 + 3H2SO4 → 3Na2SO4 + 3Br2 + 3H2O Br+5 – окислитель; Br-1 – восстановитель

15 слайд

Описание слайда:

Алгоритм составления уравнений окислительно-восстановительных реакций методом электронного баланса 1.Записывают схему реакции KMnO4+KI+H2SO4→MnSO4+ I2+K2SO4+H2O 2. Проставляют степени окисления атомов элементов, у которых она изменяется KMn+7O4+ KI-+ H2SO4→ Mn+2SO4+ I20+ K2SO4+ H2O 3. Выделяют элементы, изменяющие степени окисления, и определяют число электронов, принятых окислителем и отданных восстановителем. Mn+7 + 5ē → Mn+2 2I-1 - 2ē → I20 4.Уравниваютчисло принятых и отданных электронов, устанавливая тем самым коэффициенты для соединений, в которых присутствуют элементы, изменяющие степень окисления. Mn+7 + 5ē → Mn+22 2I-1 - 2ē → I205 2Mn+7 + 10I-1 → 2Mn+2 + 5I20 5.Подбирают коэффициенты для всех остальных участников реакции. 2KMnO4+10KI+8H2SO4→2MnSO4+5I2+6K2SO4+ 8H2O

16 слайд

Описание слайда:

Электронный баланс - метод нахождения коэффициентов в уравнениях окислительно-восстановительных реакций, при котором рассматривается обмен электронами между атомами элементов, изменяющих свою степень окисления. Число электронов, отданных восстановителем, равно числу электронов, принятых окислителем.

17 слайд

Описание слайда:

Окислительно – восстановительные реакции – это такие реакции, в которых одновременно протекают процессы окисления и восстановления и, как правило, изменяются степени окисления элементов. Рассмотрим процесс на примере взаимодействия цинка с разбавленной серной кислотой:

18 слайд

Описание слайда:

Запомним: 1.Окислительно - восстановительные реакции – это такие реакции, при которых происходит переход электронов от одних атомов, молекул или ионов к другим. 2.Окисление – это процесс отдачи электронов, степень окисления при этом повышается. 3.Восстановление – это процесс присоединения электронов, степень окисления при этом понижается. 4.Атомы, молекулы или ионы, отдающие электроны, окисляются; являются восстановителями. 5.Атомы, ионы или молекулы, принимающие электроны, восстанавливаются; являются окислителями. 6.Окисление всегда сопровождается восстановлением, восстановление связано с окислением. 7.Окислительно – восстановительные реакции – единство двух противоположных процессов: окисления и восстановления.